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Abstract. In the theory of automata the question about difference between 

the size of deterministic and nondeterministic automata which recognize the same 
language is of great importance. However, this problem has been studied mainly in 
case when input alphabet consists of at least 2 letters. In this paper some special 
kind of languages in one letter alphabet will be discussed and the estimate of the 
number of states required for deterministic and nondeterministic automata to accept 
these languages will be made. For one of these languages nondeterministic 
automaton with ≤ ⎡ n ⎤ + 1 states can be built, but for other with 
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for the corresponding deterministic automaton. 
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1. Introduction 
 

In automata theory there is a question about the difference between size (number of states) of 
deterministic finite automata (DFA) and nondeterministic finite automata (NFA), which recognize 
the same language. There are some results related to this question. The following theorem is well 
known: for every nondeterministic automaton with n states which recognizes some language L 
exists deterministic automaton with no more than 2n states which recognizes the same language L. It 
is also known that such languages exists for which NFA with n states can be built, but 
corresponding DFA requires exactly 2n states. Such languages are known for many letter alphabets 
(even for one consisting of 3 letters). This problem for single letter alphabet has not been studied 
yet. 

In this article we study NFAs with single letter alphabet. We demonstrate that such languages 

exists for which NFA requires respectively ≤ ⎡ n ⎤ + 1 and 2
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while corresponding DFA requires more than n states. 
 
 

2. Notations 
 

DFA(L) – the smallest possible number of states for DFA which recognizes language L. 
NFA(L) – the smallest possible number of states for NFA which recognizes language L. 
N = {1; 2; 3; …} – set of all natural numbers. 
N0 = {0; 1; 2; 3; …} – set of all natural numbers and zero. 
Pn – n-th prime (P1 = 2, P2 = 3, P3 = 5, etc.). 
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LCM(a1, a2, ..., an) – least common multiple of natural numbers a1, a2, ..., an (the smallest 
natural number which we can divide by any of numbers a1, a2, ..., an). 

an – letter a repeated n times (a0 = ε is empty word). 
|v| – length of word v (|an| = n). 

 
In this paper only languages in single letter alphabet Σ = {a} will be discussed (a is the only 

letter in alphabet). Let’s define the languages we are going to study: 
An (n∈N0) – the set of all languages L, which satisfy: an∉L and m > n ⇒ am∈L. Set A0 

contains exactly one language, A1 – exactly two languages, etc. An contains 2n languages. 
Bn (n∈N) – the set of all languages L, which satisfy: 0 ≤ m ≤ n–1 ⇒ am∈L and an∉L and L is 

regular. For each n set Bn is infinite. 
Cn (n∈N) – language L, which satisfies: ∀ m∈N0 m ≠ n ⇒ am∈L and an∉L. It is easy to see 

that for every n language Cn is unique. 
 
 

3. Number of States Required for DFAs 
 

Theorem 1. If n∈N0 and L∈An then DFA(L) = n+2. 
Proof. Assume, it is possible to construct a DFA, which recognizes L∈An. When automaton 

receives words a0, a1, …, an+1 as input, it reaches states q0, q1, …, qn+1. Let us assume that two of 
these states are equivalent: ∃i, j: 0 ≤ i < j ≤ n+1 and qi = qj. It means, both words aian-i and ajan-i (an 
and an+j-i) will lead automaton to the same state. It is not possible, because an∉L, but an+j-i∈L (n+j–
i>n). Therefore our assumption was wrong and automaton contains at least n+2 states, because ∀i, j 
i ≠ j ⇒ qi ≠ qj and therefore |{q0; q1; ...; qn+1}| = n+2. 

Now let us prove, that DFA(L) ≤ n+2. It is sufficient to show for each L∈An, how to construct 
an automaton, which recognizes L and contains no more than n+2 states. 

              L∈A0                                                          L∈An, n≥1 
 
 
 
 
 
             Figure 1.                                                          Figure 2. 

0            1         ...       n–1          n             n+1 

...

If L∈A0, we can use automaton shown in Figure 1. If L∈An (n≥1) then we can use automaton 
shown in Figure 2 (some of grey states must be choose as accepting, according to language L). 
Inequalities DFA(L) ≥ n+2 and DFA(L) ≤ n+2 implies that DFA(L) = n+2. 

Theorem 2. If n∈N and L∈Bn, then DFA(L) ≥ n+1. 
Proof. Let us assume, there exists a NFA which recognizes the language L∈Bn. When 

automaton receives words a0, a1, …, an as input, it reaches states q0, q1, …, qn. Let us assume that 
two of these states are equivalent: ∃i, j: 0 ≤ i < j ≤ n and qi = qj. Then words aian-j and ajan-j (an+i-j 
and an) will lead automaton to the same state. It is not possible, because an+i-j∈L (n+i–j<n), but 
an∉L. Therefore our assumption was wrong and automaton contains at least n+1 state, because ∀i, j 
i ≠ j ⇒ qi ≠ qj and therefore |{q0; q1; ...; qn}| = n+1. 
 
 



4. Number of States Required for NFAs 
 

Now we will construct NFAs, which recognizes languages from sets An and Bn and show that 
they require significantly less states than corresponding DFAs. 

Theorem 3. For each n∈N there exists language Ln from set An for which it is possible to 
build a NFA with k(n)=⎡ n ⎤+1 states which recognizes Ln. 

Proof. Let us examine a special kind of NFA 
show in Figure 3. It contains k states enumerated from 
0 to k–1; q0 is both – an initial and an accepting state. 
One can easily trace the subsets being reached by this 
automaton for different length of input word (Table 1). 
Automaton accepts word of length n=(k–2)⋅k+1, but all 
longer words does not. Thus it recognizes language L(k– 

2)⋅k+1. 

 
 
 
 
 
 
 

Figure 3. 
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Table 1. 
Length of input 

word Reached states Does NFA 
accept 

0   0 yes 
k   0,1 yes 

m⋅k   0, 1, ..., m yes 
(k–2)⋅k   0, 1, ..., k–2 yes 

(k–2)⋅k+1   1, 2, ..., k–1 no 
> (k–2)⋅k+1   0, 1, ..., k–1 yes 

Table 2. 
s r n 
0 0   (k–2)⋅k+1 
1 0   (k–2)⋅k 
m 0   (k–2)⋅k+1–m 

k–1 0   (k–3)⋅k+2 
k–1 k–1   (k–3)⋅k+1 
k–1 k–m   (k–3)⋅k+2–m 
k–1 3   (k–3)⋅(k–1)+2 
k–1 2   (k–3)⋅(k–1)+1  

 
Now we will try to build similar automaton with the same number of states, but for other n. 

Let us generalize the automaton show in Figure 3, by choosing arbitrary initial state qs and arbitrary 
accepting state qr, where r, s∈{0, 1, ..., k–1}. One can decrease n for this automaton, by smoothly 
changing r and s (as shown in Table 2). As we can see n can take any value from interval {(k–3)⋅(k–
1)+2, …, (k–2)⋅k+1} for a fixed k (size of automaton). There is no need to further extend the Table 
2., because we have already gained (k–3)⋅(k–1)+1 as the value of n, which equals to upper bound of 
the next interval (when automaton has k–1 state and s = r = 0). Thus these intervals cover all natural 
numbers, and for each n the corresponding k can be found. 

In order to find k for a given n (determine the interval to which n belongs), let us denote the 
interval’s endpoints by nmin and nmax. nmin=(k–3)⋅(k–1)+2 or 21)( minmin +−= nnk . This function is 
monotonously increasing thus for all n from the same interval the integer part of it will be the same. 
So we can write that ⎣ ⎦ 21)( +−= nnk . As well as 1)2(max +⋅−= kkn , 1)( maxmax += nnk  and 

k(n) = ⎡ n ⎤+1. Of course it means that )( nOk = . 
When we have found k, expressions for r and s are as follows: if n ≥ (k–3)⋅k+2 then r=0 and 

s=(k–2)⋅k+1–n, otherwise (if n < (k–3)⋅k+2) r=3+n–((k–3)⋅(k–1)+2)=1+n–(k–3)⋅(k–1) and s=k–1. 
Note: as we have shown earlier for these languages DFA(Ln) > n, thus equivalent NFA 

requires significantly less states. 
 



Now let us examine another kind of NFAs. Let Aut(a1, a2, ..., ak | n) denote NFA shown in 
Figure 4. (ai∈N, k∈N and n∈N). It has accepting initial state and k arrows coming out of it. The i–
th arrow points to a cycle containing ai states where i∈{1, 2, ..., k}. Therefore in total automaton has 

 states. In each cycle all states are accepting, except one. The nonaccepting state 
in the i-th cycle can be determined in the following way: one should determine which state in i-th 
cycle the automaton has reached after reading word an. 

kaaa ++++ ...1 21

 
 
 
 
 
 
 
 
 

Figure 4.
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Now we should find out which words are recognized by the above mentioned automata 
Aut(a1, a2, ..., ak | n) depending on the values of ai and n. 

Theorem 4. An automaton Aut(a1, a2, ..., ak | n) does not accept word v if and only if both 
conditions are satisfied: 

1) |v| > 0; 
2) (|v| – n) is divisible by LCM(a1, a2, ..., ak). 
Proof. For an automaton to not accept word v, it is necessary that |v| > 0. It is also necessary 

for |v| – n to be divisible by ai (otherwise v will be accepted in cycle of length ai). Of course if ai=1 
then |v| – n is divisible by 1. Therefore |v| – n is divisible by a1, a2, ..., ak. From here follow that |v| – 
n is divisible by LCM(a1, a2, ..., ak). It is easy to understand that these conditions are sufficient. 
Therefore the theorem has been proven. 

Remark. In theorems 5, 6, 7 and 10 Pn stands for n-th prime number. 
Theorem 5. For every n ∈ N there exists NFA which recognize some language from set Bn 

and automata has form Aut(P1, P2, ..., Pk | n) where k is some natural number. 
Proof. Let’s choose smallest natural number k such as P1·P2· ... ·Pk ≥ n. Product P1·P2· ... ·Pk 

we denote with X. Then automaton Aut(P1, P2, ..., Pk | n) will recognize some language from the set 
Bn. Really, LCM(P1, P2, ..., Pk) = P1·P2· ... ·Pk = X ≥ n. According to previously proven theorem 
automaton does not recognize word v if |v| > 0 and (|v| – n) is divisible by X. If for some word v |v| < 
n and |v| – n is divisible by X then n – |v| ≥ X ≥ n ⇒ |v| ≤ 0. There do not exist words for which  |v| < 
0 and word |v| = 0 is accepted. Therefore all words which have |v|<n will be accepted and word |v| = 
n will not be accepted. 

According to theorem 5 we can choose the smallest natural k such as P1·P2· ... ·Pk ≥ n. Further 
we will use this fact to estimate the number of states for corresponding NFA. 

Further we will need the estimate of n-th prime. Theorem 6 provides us the needed estimate. 
Theorem 6 (Rosser, 1938). For all n ∈ N Pn > n·ln n [1]. 
Theorem 7. If n ∈ N, then P1·P2· ... ·Pn > 0,5·nn. 
Proof. With Ak we denote a statement P1·P2· ... ·Pk > 0,5·kk. Correctness of statements 

A1, A2, ..., A16 we can check using computer. If k ≥ 16 then according to theorem 6 
ekkkkPk ⋅>⋅≥⋅> 16lnln . 

Let us suppose that Ak is true (k ≥ 16) and prove Ak+1. Ak ⇔ P1·P2· ... ·Pk > 0,5·kk ⇒ P1·P2· ... 
·Pk+1 > 0,5·kk·(k+1)·e. Let us prove the following inequality 0,5·kk·(k+1)·e > 0,5·(k+1)k+1. We can 
transform this inequality to kk·e > (k+1)k, ( )k

ke 11+> . Last inequality is true (it is well known from 
calculus). Therefore Ak ⇒ Ak+1. From here follow that Ak is true for all k ≥ 16. Statements A1, A2, ..., 
A16 are also true therefore statements An are corrects for all natural values of n. Thus the theorem 
has been proved. 
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(if A > 1). After several transformations we gain: 
AA lnln5,1ln5,05,1ln5,1 ⋅>⋅+⋅  

(for all A > 1). In order to prove this inequality let us substitute A by e3x where x > 0. Then we must 
prove inequality )3ln(5,135,05,1ln5,1 xx ⋅>⋅+⋅  or xx ln3ln5,1ln +>+  for all x > 0. Last 
inequality we can transform to 

xx ln1)13ln5,1(ln >−++−  and xx ln1...3068,0 >−+ . 
Last inequality is correct because from calculus it is known that x > 0 ⇒ x – 1 ≥ ln x. 

Now it is possible to conclude that if for a given n we need to find smallest k such as the 
product of first k primes is greater or equal to n then we can look for k such as 0,5·kk ≥ n. Thus 

kk ≥ 2n and k ln k ≥ ln(2n). According to theorem 8: 
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needed inequality follows from this inequality). The above shown inequality can be transformed in 
the following way nnn ln6,1lnln)2ln(5,1 ⋅<+⋅ , nnn ln6,1lnlnln5,12ln5,1 ⋅<+⋅+⋅ , 

. After substituting n by e20x we gain that nn ln1,0lnln2ln5,1 ⋅<+⋅ xxx +<++⋅ ln20ln2ln5,1 , or 
. It can be seen that if x > 4 then xxx +<++ ln1...0354,3

3,0354... < x & xx ≤+ ln1  ⇒ xxx +<++ ln1...0354,3 . 
If x is sufficiently large then this inequality is true. Thus it can be concluded that for sufficiently 
large n also the initial inequality holds. 

Theorem 10. There is number n2 ∈ N such as n ≥ n2 ⇒ . nnPPP n ln7,0)...(1 2
21 ⋅<++++

Proof. In order to prove this theorem we will use the result nnPPP n ln
2
1~... 2

21 +++  

(n → ∞) (proved by Bach and Shallit, 1996 [2]). From this statement immediately follows that 

1
ln5,0
...

lim 2
21 =
⋅

+++
∞→ nn

PPP n

n
   and   1

ln5,0
)...(1

lim 2
21 =

⋅
++++

∞→ nn
PPP n

n
. 

Therefore we can find natural number n2 that n ≥ n2 ⇒ 4,1
ln5,0

)...(1
2

21 <
⋅

++++
nn

PPP n . This statement 

is equivalent to the following statement: ∃ n2 ∈ N such that n ≥ n2 ⇒ 
 which we wanted to prove. nnPPP n ln7,0)...(1 2

21 ⋅<++++



Theorem 11. There exists n0 ∈ N such as for all n ≥ n0 NFA that recognizes some language 

from the set Bn with no more than 2
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Using inequalities 0,7 · 2,56 = 1,792 < 1,8 and 0,7 · 2,56 · ln 1,6 = 0,842... < 0,85 we gain inequality 
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which holds for sufficiently large n. Thus such n0 mentioned in theorem 11 can be found that for all 
n ≥ n0 this inequality holds. 

Remark. Theorems 4, 5, ..., 11 was proved by R.Ozols. 
Theorem 12. For every n ≥ n0 there exists NFA, which recognizes language Cn and has at 

most ⎡ n ⎤ + 2
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Proof. Such automaton can be constructed by combining NFAs mentioned in proofs of 
theorems 3 and 4. It is easy to see that all words v such |v| < n or |v| > n will be accepted. If |v| = n 
then v will not be accepted because none of the automata accept it. Thus automaton constructed will 

have at most ⎡ n ⎤ + 2
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estimations of number of states for both automatons (from theorems 3 and 4). 
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